
SPASS Input SyntaxVersion 3.3Martin Suda & Christoph WeidenbahMax-Plank-Institut für InformatikCampus E1 466123 Saarbrüken(suda,weidenb)�mpi-inf.mpg.de Renate A. ShmidtShool of Computer SieneThe University of ManhesterManhester, M13 9PL, Englandshmidt�s.man.a.ukAbstratThis doument introdues the SPASS input syntax. It ame out of the DFG syntax format that was thought to be aformat that an easily be parsed suh that it forms a ompromise between the needs of the different groups. The languageis partly more general than other popular exhange formats suh as Otter or TPTP in allowing non-lausal and sortedformulae, modal logi, several proof formats as well as user-de�ned operators. The latter feature makes it also useful fornon-lassial logis.1 IntrodutionThe language proposed in the following is intended to be a ommon exhange format for logi problem settings. It isthought to be a format that an easily be parsed suh that it forms a ompromise between the needs of the different groups.Therefore, it is kept as simple as possible, in partiular, the grammar of the language an be easily proessed by someautomati parser-generator.In any ase it will be neessary to provide tools that transform �les from the present syntax into other standard formats(e.g., Otter [8℄ or TPTP [12℄) and vie versa. Currently we an (partly) transform Otter input �les to DFG-Syntax �lesand vie versa.The DFG language was extended to modal logi and desription logi formulae as well as formulae of Tarski's rela-tional alulus. This language extension was �rst implemented in the theorem proverMSPASS [5, 6, 11℄ and inorporatedinto SPASS in Deember 2006.2 NotationFor the grammar de�ning the syntax, terminals are always underlined while non-terminals and meta-symbols are not.Braes ome in different variants and have the following meaning:f g optionalf g� arbitrarily oftenf g+ at least one3 ProblemsThe unit of information we an desribe are problems. A problem may not only ontain formulae or lauses but alsoinformation on parameter settings.
1

problem ::= begin problem(identifier).desriptionlogial partfinludesg�fsettingsg�end problem.Note that the desription part as well as the logial part are mandatory.4 DesriptionsThe desription part should help to understand what the problem is about. In partiular, the logi part is mandatory, ifnon-standard quanti�ers or operators are used.desription ::= list of desriptions.name(f* text *g).author(f* text *g).fversion(f* text *g).gflogi(f* text *g).gstatus(log state).desription(f* text *g).fdate(f* text *g).gend of list.log state ::= satisfiable | unsatisfiable | unknown5 The Logial PartsAny non-prede�ned signature symbol used in a problem has to be de�ned in the delaration part. Then the logial partmay provide a formulation of the problem by formulae as well as by some lause normal forms. In addition, proofs forthe onjeture stated by the formulae (lauses) may be ontained.logial part ::= fsymbol listgfdelaration listgfformula listg�fspeial formula listg�flause listg�fproof listg�As mentioned before, non-prede�ned signature symbols have to be delared in advane. Sine the urrent sope of thesyntax mainly overs �rst-order logi, we are onerned with funtion and prediate symbols and non-standard operatorsand quanti�ers. The usual �rst-order operators and quanti�ers are prede�ned. In addition, there is a unique symbol forequality, see below.For modal logi and desription problems it is sometimes neessary to to link the propositional symbols to theirorresponding �rst-order prediate symbols. This an be done with a translpairs delaration. The �rst symbol in a pairmust always be a nullary prediate symbol, while the seond is usually a unary or binary prediate symbol.
2

symbol list ::= list of symbols.ffuntions[fun sym | (fun sym,arity)f, fun sym | (fun sym,arity)g�℄.gfprediates[pred sym | (pred sym,arity)f, pred sym | (pred sym,arity)g�℄.gfsorts[sort sym f,sort symg�℄.gftranslpairs[(pred sym , pred sym)f, (pred sym , pred sym)g�℄.gend of list.All delared symbols have to be different from eah other and from all terminal and prede�ned symbols.We support a rih sort language that may be introdued by a delaration part. We do not allow free variables in termdelarations, but polymorphi sorts.delaration list ::= list of delarations.fdelarationg�end of list.delaration ::= subsort del | term del | pred del | gen delgen del ::= sort sort sym ffreelyg generated by fun list.fun list ::= [fun sym f,fun symg�℄subsort del ::= subsort(sort sym,sort sym).term del ::= forall(term list,term). | term.pred del ::= prediate(pred symf,sort symg+).sort sym ::= identifierpred sym ::= identifierfun sym ::= identifierConerning the term delarations, we assume that all terms in term list are variables or expressions of the formsort sym(variable).Now there are two types of formulae: Axiom formulae and onjeture formulae. If the status of the problem (seebelow) states �unsatis�able� it refers to the lause normal form resulting from the onjuntion of all axiom formulae andthe negation of the disjuntion of all onjeture formulae. Of ourse, �satis�able� means that the overall formula has amodel. formula list ::= list of formulae(origin type).fformula(ftermgf,labelg).g�end of list.origin type ::= axioms | onjetureslabel ::= identifierWe assume that all formulae are losed, so we do not allow free variables inside a formula expression.Quanti�ers always have two arguments: A term list and the subformulae. The term list is assumed to be a variablelist (or a list of variables annotated with a sort) for the usual �rst-order quanti�ers, however, one ould easily imaginenon-lassial quanti�ers, where �quanti�ation� over real terms makes sense.term ::= quant sym(term list,term) | symbol |symbol(termf,termg�)term list ::= [termf,termg�℄quant sym ::= forall | exists | identifierarithm sym ::= le | ls | ge | gs | plus | mult |f-g numberf.numberg | npidentifiersymbol ::= equal | true | false | or | and | not | implies |implied | equiv | identifier3

We support disjuntive normal form as well as lause normal form. Even lauses have to be written as their orre-sponding formulae, in partiular all variables have to be bound by the leading quanti�er. Our experiene with problemsstated by a set of lauses shows that this helps to detet �aws, e.g., if aidentally it was forgotten to delare some onstantthat would then be onsidered as a variable. Sine free variables are not allowed, this ase is deteted in our syntax.The arithmeti symbols le, ls, ge, gs, plus, mult, stand for �less or equal�, �stritly less�, �greater or equal�, �stritlygreater�, �plus� and �multiply�, respetively. There is no �minus� that an be written as a multipliation with �1. Theonstants npidenti�er stand for parameters (onstants) of the arithmeti sort that have to be delared in the delaration part.For an example problem with linear arithmeti formulas see Figure 6. Arithmeti is supported starting from SPASS 4.0.lause list ::= list of lauses(origin type,lause type).flause(fnf lause | dnf lause | brief lausegf,labelg).g�end of list.lause type ::= nf | dnfnf lause ::= forall(term list,nf lause body) | nf lause bodydnf lause ::= exists(term list,dnf lause body) | dnf lause bodybrief lause ::= term ws list || term ws list -> term ws listnf lause body ::= or(termf,termg�)dnf lause body ::= and(termf,termg�)term ws list ::= termf termg�f+gIn ase of nf lause body and dnf lause body we assume all subterms generated for term to be literals.5.1 Speial types of formulaeModal logi or desription logi problems are spei�ed with speial types of formulae, whih inlude �rst-order formulae,propositional (or Boolean) type formulae and relational type formulae.speial formula list::= list of speial formulae(origin type,speial type).flabelled formulag�end of list.labelled formula ::= formula(ftermgf,labelg) |prop formula name(fprop termgf,labelg) |rel formula name(frel termgf,labelg)prop formula name ::= prop formula | onept formularel formula name ::= rel formula | role formulaspeial type ::= eml | dlPropositional and relational type formulae an be onstruted using familiar modal logi and desription logi opera-tors. The pre-de�ned logial operators inlude:� the standard Boolean operators on propositional type and relational type formulae: true, false, not, and, or, implies(subsumed by), implied (subsumes), equiv,� multi-modal operators with omplex relational arguments: dia and box (synonyms are some and all), as well asdomain and range,� additional relational operators: omp (omposition), sum (relative sum), onv (onverse), id (the identity relation),div (the diversity relation), and� test (test), domrestr (domain restrition) and ranrestr (range restrition).
4

prop term ::= prop symbol | prop symbol(prop termf,prop termg�)| prop quant sym(rel term,prop term) |prop quant sym unary(rel term)prop symbol ::= true | false | or | and | not | implies | implied |equiv | identifierprop quant sym ::= box | dia | all | someprop quant sym unary::= domain | rangerel term ::= rel symbol | rel symbol(rel termf,rel termg�)| rel prop sym(rel term,prop term) |rel prop sym unary(prop term)rel symbol ::= true | false | id | div | or | and | not | implies |implied | equiv | omp | sum | onv | identifierrel prop sym ::= domrestr | ranrestrrel prop sym unary ::= testNote the symbols true and false have multiple interpretations. Apart from their usual interpretation in propositionallogi and �rst-order logi, true and false may also be used as Boolean or relational formulae. true used as a Boolean type,represents the universal set, and used as a relational type it represents the universal relation. Similarly, false an be usedas the bottom Boolean and relational type, representing the empty set and the empty relation.6 AlphabetThe alphabet allowed to ompose identi�ers is restrited to letters, digits and the undersore symbol.identifier ::= fletter | digit | speial symbolg+letter ::= a�z | A�Zarity ::= -1 | numbernumber ::= fdigitg+digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9speial symbol ::=6.1 ExamplesWe start with a omplete desription of Pelletier's [9℄ problem No. 57 that an be found in Figure 1. The syntax for thedesription part is explained in Setion 4.Our seond example, Figure 2, uses the language features provided for the delaration of sorts.Figures 3 to 5 give examples from modal logi, desription logi and the relational alulus.Finally, an example with linear arithmeti formulas.7 ProofsWe also de�ne a �rst, simple proof format. Basially a proof onsists of a sequene of �simple� steps. The semantis ofstep is that the introdued formula is a logial onsequene of the formulae pointed to by the list of parents.We already have implemented some sripts that an be used to automatially hek resolution proofs. Here, the ideais to be able to hek ompliated, tedious, long proofs found by some prover automatially by using a different prover.
5

begin problem(Pelletier57).list of desriptions.name(f* Pelletier's Problem No. 57 *g).author(f* Christoph Weidenbah *g).status(unsatisfiable).desription(f* Problem taken in revised form from the "Pelletier Colletion",Journal of Automated Reasoning, Vol. 2, No. 2, pages 191-216 *g).end of list.list of symbols.funtions[(f,2), (a,0), (b,0), (,0)℄.prediates[(F,2)℄.end of list.list of formulae(axioms).formula(F(f(a,b),f(b,))).formula(F(f(b,),f(a,))).formula(forall([U,V,W℄,implies(and(F(U,V),F(V,W)),F(U,W)))).end of list.list of formulae(onjetures).formula(F(f(a,b),f(a,))).end of list.end problem. Figure 1: Pelletier's Problem No. 57

6

begin problem(Sorts).list of desriptions.name(f* Sorts and Plus *g).author(f* Christoph Weidenbah *g).status(satisfiable).desription(f* Defines plus over suessor and zero. *g).end of list.list of symbols.funtions[plus,s,zero℄.sorts[even,nat℄.end of list.list of delarations.subsort(even,nat).even(zero).forall([nat(x)℄,nat(s(x))).forall([nat(x),nat(y)℄,nat(plus(x,y))).forall([even(x),even(y)℄,even(plus(x,y))).forall([even(x)℄,even(s(s(x)))).forall([nat(y)℄,even(plus(y,y))).end of list.list of formulae(axioms).formula(forall([nat(y)℄,equal(plus(y,zero),y))).formula(forall([nat(y),nat(z)℄,equal(plus(y,s(z)),s(plus(y,z))))).end of list.end problem. Figure 2: Example with Sort Delarations
7

begin problem(Halpern Moses branhing formula 1).list of desriptions.name(f* Halpern and Moses (1992), Proposition 6.5 *g).author(f* Renate Shmidt *g).status(satisfiable).desription(f* Branhing formulae of size O(m2) satisfiable in aK-model with at least 2m states. From the proof ofProposition 6.5 of Halpern and Moses (1992). m = 1. *g).end of list.list of symbols.prediates[(R,2), (r,0), (p0,0), (p1,0), (d0,0), (d1,0), (d2,0) ℄.end of list.list of speial formulae(onjetures, EML).prop formula(not(and(d0, not(d1),implies(d1, d0),implies(d2, d1),implies(d0, and(implies(p0, box(r, implies(d0, p0))),implies(not(p0), box(r, implies(d0, not(p0)))))),implies(d1, and(implies(p1, box(r, implies(d1, p1))),implies(not(p1), box(r, implies(d1, not(p1)))))),implies(and(d0, not(d1)),and(dia(r, and(d1, not(d2), p1)),dia(r, and(d1, not(d2), not(p1))))),box(r, and(implies(d1, d0),implies(d2, d1),implies(d0, and(implies(p0, box(r, implies(d0, p0))),implies(not(p0), box(r, implies(d0, not(p0)))))),implies(d1, and(implies(p1, box(r, implies(d1, p1))),implies(not(p1), box(r, implies(d1, not(p1)))))),implies(and(d0, not(d1)),and(dia(r, and(d1, not(d2), p1)),dia(r, and(d1, not(d2), not(p1)))))))))).end of list.end problem. Figure 3: Modal logi example
8

begin problem(Cheese lovers example).list of desriptions.name(f* Cheese lovers example *g).author(f* Renate Shmidt*g).status(unknown).desription(f* A desription logi example. *g).end of list.list of symbols.funtions[(adam,0), (bob,0), (auliflower,0), (heddar,0) ℄.prediates[(plant,0), (Plant,1), (heese,0), (Cheese,1),(food,0), (Food,1), (person,0), (Person,1),(vegetarian,0), (Vegetarian,1), (heese lover,0), (Cheese lover,1),(eat,0), (Eat,2), (sibling of,0), (Sibling of,2) ℄.translpairs[(plant,Plant), (heese,Cheese), (food,Food),(vegetarian,Vegetarian), (heese lover,Cheese lover),(eat,Eat), (sibling of,Sibling of)℄.end of list.list of speial formulae(axioms, DL).% TBox% Plants and heese are foodonept formula(implies(or(plant, heese), food)).% Persons eat foodonept formula(implies(person, some(eat, food))).% Vegetarians eat only plantsonept formula(implies(vegetarian,and(some(eat, plant), all(eat, plant)))).% Cheese lovers eat every heeseonept formula(implies(heese lover, not(some(not(eat), heese)))).% sibling of is a symmetri relationrole formula(implies(sibling of, onv(sibling of))).% sibling of is a transitive relationformula(forall([x,y,z℄,implies(and(Sibling of(x,y), Sibling of(y,z)), Sibling of(x,z)))).% ABoxformula(Person(adam)).formula(Person(bob)).formula(Sibling of(adam, bob)).formula(Plant(auliflower)).formula(Cheese(heddar)).formula(Eat(bob, auliflower)).formula(not(Eat(bob, heddar))).end of list.list of speial formulae(onjetures, DL).formula(not(Cheese lover(bob))). % valid% formula(Vegetarian(bob)). % not validend of list.end problem. Figure 4: Desription logi example9

begin problem(Relational alulus example).list of desriptions.name(f* Relational alulus example *g).author(f* Renate *g).status(unknown).desription(f* Demonstrating the syntax of relational formulae *g).end of list.list of symbols.prediates[(r,0), (s,0)℄.end of list.list of speial formulae(axioms, EML).% r is a subrelation of srel formula(implies(r,s)).% r is transitiverel formula(implies(omp(r,r),r)).% r is reflexiverel formula(implies(id,r)).% r is symmetrirel formula(implies(r,onv(r))).end of list.list of speial formulae(onjetures, EML).rel formula(implies(id,s)). % valid%rel formula(implies(omp(s,s),s)). % not validend of list.end problem. Figure 5: Relational alulus example
10

begin problem(Arithm).list of desriptions.name(f* Arithmeti *g).author(f* Christoph Weidenbah *g).status(unknown).desription(f* Problem to show syntax for arithmeti expressions*g).end of list.list of symbols.funtions[(npa,0)℄.prediates[(S0,2),(S1,2),(S2,2),(S3,2),(S4,2)℄.end of list.list of formulae(axioms).formula(forall([x,y℄,implies(and(S0(npa,y), ge(npa,200)),S1(npa,y)))).formula(forall([x,y℄,implies(and(S0(x,y), le(x,200)),S3(x,y)))).formula(forall([x,y,z℄,implies(and(S1(x,y), le(z,40),ge(z,0)),S2(x,z)))).formula(forall([x,y,z℄,implies(and(S3(x,y), le(z,40),ge(z,0)),S4(x,z)))).formula(forall([x,y,z℄,implies(and(S2(x,y), equal(z,plus(plus(x,y),-40))),S0(z,y)))).formula(forall([x,y,z℄,implies(and(S4(x,y), equal(z,plus(x,y))), S0(z,y)))).end of list.list of formulae(onjetures).formula(implies(forall([x,y℄, implies(le(x,160),S0(x,y))),exists([u,v℄,and(S0(u,v), ge(u,240))))).end of list.end problem. Figure 6: Example with Arithmeti Formulas
11

proof list ::= list of prooff(proof typef,asso listg)g.fstep(referene,result,rule appl,parent listf,asso listg).g�end of list.referene ::= term | identifier | user refereneresult ::= term | user resultrule appl ::= term | identifier | user rule applparent list ::= [parentf,parentg�℄parent ::= term | identifier | user parentasso list ::= [key:valuef,key:valueg�℄key ::= term | identifier | user keyvalue ::= term | identifier | user valueproof type ::= identifier | user proof typeAll user non-terminals of the grammar must be ompatible with the already de�ned non-terminals. For example, auser key must be a term or an identifier.7.1 SPASS ProofsHere is the instantiation of the general proof shema for SPASS style proofs that are supported by our proof heker.user referene ::= numberuser result ::= nf lauseuser rule appl ::= App | SpL | SpR | EqF | Rew | Obv | EmS | SoR |EqR | MPm | SPm | OPm | SHy | OHy | URR | Fa |Spt | Inp | Con | SSi | UnC | Ter | Res | CRW |AED | MRR | Defuser parent ::= numberuser proof type ::= SPASSuser key ::= splitleveluser value ::= numberThe assoiation list is used to indiate the split level. Figure 7 shows an example for a DFG-problem together witha SPASS style resolution proof. The rule appliation identi�ers name the SPASS inferene/simpli�ation/redution rulesgeneral resolution (Res), superposition left (SpL), superposition right (SpR), general fatoring (Fa), rewriting (Rew)and mathing replaement resolution (MRR). Clauses are labelled with numbers and referenes inside of proof steps referto these numbers.Other rule appliation identi�ers are: lause deletion (App), empty sort (EmS), sort resolution (SoR), equality res-olution (EqR), equality fatoring (EqF), merging paramodulation (MPm), paramodulation (SPm), ordered paramodula-tion (OPm), simple hyper-resolution (SHy), ordered hyper-resolution (OHy), unit resulting resolution (URR), splitting(Spt), input (Inp), ontextual rewriting (CRw), ondensing (Con), assignment equation deletion (AED), obvious redu-tion (Obv), sort simpli�ation (SSi), unit on�it (UnC), expansion of atom de�nitions (Def) and terminator (Ter).8 InludesInludes an be used to split a big problem into more than one �le, and maintain them separately. This might be, forexample, helpful when multiple problems share a ommon set of axioms.inludes ::= list of inludes. finlude entryg� end of list.inlude entry ::= inlude(filename f, fla seletion g).filename ::= ' text 'fla seletion ::= [identifier f, identifierg� ℄12

begin problem(ProofDemo).list of desriptions.name(*test.dfg*).author(*SPASS*).status(unsatisfiable).desription(*File generated by SPASS ontaining a proof.*).end of list.list of symbols.funtions[(skf1, 1)℄.prediates[(P, 2)℄.end of list.list of lauses(onjetures, nf).lause(forall([U℄,or(P(U,skf1(U)))),1).lause(forall([U℄,or(not(P(skf1(U),U)))),2).lause(forall([V,U,W℄,or(equal(U,V),equal(V,W),equal(W,U))),3).end of list.list of proof(SPASS).step(28,forall([V,U,W℄,or(equal(U,skf1(V)),equal(W,U),P(V,W))),SpR,[3,1℄,[splitlevel:0℄).step(57,forall([V,U℄,or(equal(U,skf1(skf1(V))),equal(V,U))),Res,[28,2℄,[splitlevel:0℄).step(65,forall([V,U℄,or(equal(U,V),P(skf1(U),V))),SpR,[57,1℄,[splitlevel:0℄).step(80,forall([V,U℄,or(not(P(U,skf1(V))),equal(V,U))),SpL,[57,2℄,[splitlevel:0℄).step(107,forall([V,U℄,or(equal(U,skf1(V)),equal(V,skf1(U)))),Res,[65,80℄,[splitlevel:0℄).step(111,forall([U℄,or(equal(skf1(U),U))),Fa,[107,107℄,[splitlevel:0℄).step(152,forall([U℄,or(P(U,U))),Rew,[111,1℄,[splitlevel:0℄).step(153,forall([U℄,or(not(P(U,U)))),Rew,[111,2℄,[splitlevel:0℄).step(190,or(false),MRR,[153,152℄,[splitlevel:0℄).end of list.end problem. Figure 7: A SPASS Style Resolution Proof
13

Eah of the �les reognized in the inlude entry is opened and its ontent is loaded in the memory (along withthe �le just being loaded). Inluded �les an also ontain other inludes, so that inlusions are followed reursively.File an be spei�ed either by a full path or a relative one. If the latter is the ase, the �le is �rst sought relativeto SPASSINPUT environment variable, and only if not found a seond attempt is made to �nd the �le in the urrentdiretory.If fla seletion is not omitted, it ontains a list of formula names. Only formulas of those names will be inludedfrom the spei�ed �le.It is onsidered an error if an inluded �le ontains a settings setion (see 9).9 SettingsThe idea to inlude settings into the problem �le format is to enable people to reprodue spei� proofs that depend onpartiular input settings of the respetive prover.settings ::= list of general settings fsetting entryg+ end of list.|list of settings(setting label). f* text *g end of list.setting entry ::= hypothesis[label f,labelg�℄.setting label ::= KIV | LEM | OTTER | PROTEIN | SATURATE | 3TAP |SETHEO | SPASSThe labels name the following systems: KIV [10℄, LEM [4℄, OTTER [8℄, PROTEIN [1℄, SATURATE [3℄, 3TAP [2℄,SETHEO [7℄, SPASS [13℄. For example, to speify the preedene for SPASS and to diret SPASS to print a proof, weinlude the following settings:list of settings(SPASS).f� set flag(DoProof,1).set preedene(a,b,,f,F).�gend of list.10 Misellaneous10.1 CommentsAfter the % symbol the rest of line is ignored. The omment symbols f* and *g are only allowed at the plaes de�nedabove.10.2 ConventionsWe suggest the following onventions onerning suf�xes of �le names:.dfg For general problem �les, inluding formulae, lauses, proofs at the same time..nf For problem �les ontaining at least lists of lauses in onjuntive normal form.AknowledgementsWe would like to thank all members of the German �Shwerpunkt Deduktion� groupwho ontributed to previous versionsof this paper. Speial thanks to Mihael Christen, Enno Keen, Andreas Nonnengart and Dalibor Topí who proof-readseveral versions of this paper.Renate Shmidt gratefully aknowledges the support of the UK Engineering and Physial Sienes Researh Counilvia researh grants GR/M36700, GR/M88761 and GR/R92035.14

Referenes[1℄ Peter Baumgartner and Ulrih Furbah. Protein: A prover with a theory extension interfae. In A. Bundy, editor,12th International Conferene on Automated Dedution,CADE-12, volume 814 of LNAI, pages 769�773. Springer,1994. Available in the WWW, URL: http://www.uni-koblenz.de/ag-ki/Systems/PROTEIN/.[2℄ Bernhard Bekert, Reiner Hähnle, Peter Oel, and Martin Sulzmann. The tableau-based theorem prover 3tap, version4.0. InM.A. MRobbie and J.K. Slaney, editors, 13th International Conferene on Automated Dedution, CADE-13,volume 1104 of LNCS, pages 303�307. Springer, 1996.[3℄ Harald Ganzinger and Robert Nieuwenhuis. The saturate system 1994. http://www.mpi-sb.mpg.de/SATURATE/Saturate.html, 1994.[4℄ Birgit Heinz. Anti-Uni�kation modulo Gleihungstheorie und deren Anwendung zur Lemmagenerierung. Disserta-tion, TU Berlin, De 1995.[5℄ U. Hustadt and R. A. Shmidt. MSPASS: Modal reasoning by translation and �rst-order resolution. In R. Dy-khoff, editor, Automated Reasoning with Analyti Tableaux and Related Methods, International Conferene(TABLEAUX'2000), volume 1847 of Leture Notes in Arti�ial Intelligene, pages 67�71. Springer, 2000.[6℄ U. Hustadt, R. A. Shmidt, and C. Weidenbah. MSPASS: Subsumption testing with SPASS. In P. Lambrix,A. Borgida, M. Lenzerini, R. Möller, and P. Patel-Shneider, editors, Pro. of Intern. Workshop on DesriptionLogis'99, pages 136�137. Linköping University, July 30�31 1999.[7℄ Reinhold Letz, Johann Shumann, S. Bayerl, and Wolfgang Bibel. Setheo: A high-performane theorem prover.Journal of Automated Reasoning, 8(2):183�212, 1992.[8℄ WilliamMCune. Otter 3.0 referenemanual and guide. Tehnial Report ANL-94/6, ArgonneNational Laboratory,1994.[9℄ Franis Jeffry Pelletier. Seventy-�ve problems for testing automati theorem provers. Journal of Automated Rea-soning, 2(2):191�216, 1986. Errata: Journal of Automated Reasoning, 4(2):235�236,1988.[10℄ Wolfgang Reif. The kiv-approah to software veri�ation. In Manfred Broy and Stefan Jähnihen, editors, KORSO:Methods, Languages, and Tools for the Constrution of Corret Software � Final Report, volume 1009 of LNCS,pages 339�368. Springer, 1995.[11℄ R. A. Shmidt. MSPASS. http://www.s.man.a.uk/�shmidt/mspass/.[12℄ Geoff Sutliffe, Christian B. Suttner, and Theodor Yemenis. The TPTP problem library. In Alan Bundy, editor,Twelfth International Conferene on Automated Dedution, CADE-12, volume 814 of Leture Notes in Arti�ialIntelligene, LNAI, pages 252�266, Nany, Frane, June 1994. Springer.[13℄ Christoph Weidenbah, Uwe Brahm, Thomas Hillenbrand, Enno Keen, Christian Theobald, and Dalibor Topi.SPASS version 2.0. In Andrei Voronkov, editor, Proeedings of the 18th International Conferene on AutomatedDedution (CADE-18), volume 2392 of Leture Notes in Arti�ial Intelligene, pages 275�279, Kopenhagen, Den-mark, 2002. Springer.
15

