P

— I NFORMATIK

SPASS: Tutorial

Learn How to Use SPASS!

SPASS is an automated theorem prover for first-order logic with equality. So the input for the
prover isafirst-order formulain our syntax. Running SPASS on such aformularesultsin the final
output SPASS bei seite: Proof found. iftheformulaisvalid, SPASS bei seite: Conpletion
f ound. if theformulais not valid and because validity in first-order logic is undecidable, SPASS
may run forever without producing any final result.

L ets start a compl ete loop through the usage of SPASS. Starting point is always some problem you
want to solve. Assume that out of the two sentences

(1) Sokratesisahuman.
(2) All humans are mortal.
you want to conclude
(3) Sokratesis mortal.
Thefirst step isto formalize the problem in first-order logic. The formulae are
(1) Human(sokrates)
(2 ¥xHuman(x) > Mortal(x)
(3) Mortal(sokrates)

where syntactically Human and Mortal are predicates while sokratesis a constant. The symbol ¥

introduces universal quantification and — material implication. The next step is to provide SPASS
an input file that contains exactly the above formulae in our syntax.

begi n_probl en(Sokr at es1).

|ist_of descriptions.

name({* Sokrat es*}).

aut hor ({*Chri stoph Wi denbach*}).

status(unsati sfi abl e).

description({* Sokrates is nortal and since all humans are nortal, he is nortal

end_of _|ist.
list_of synbols.
functions[(sokrates,0)].
predi cat es[(Human, 1), (Mortal ,1)].
end_of [|ist.
list_of formul ae(axi ons).

f or mul a(Humman(sokr at es), 1).

formul a(forall ([x],inplies(Human(x), Mortal (x))), 2).
end_of _|ist.

Iist_of _formul ae(conjectures).

formul a(Mort al (sokrates), 3).

end_of [|ist.

end_pr obl em

An SPASS input file consists of three parts, a description part started with

| i st _of _descriptions., apart where the signature is declared starting with 1 i st _of _synbol s. ,
apart where al axioms are given, starting with | i st _of _f or mul ae(axi ons) . and afinal part
where all conjectures are presented, starting with | i st _of _f or mul ae(conj ect ures) . . Formulae
areintroduced by f or nul a(fornul a). and are always written in prefix notation. For further
details, see the syntax description. Then SPASS tries to prove that the conjunction of all axiom
formulae implies the digunction of all conjectures.

Y ou can copy the above input description for SPASS and paste it in our WebSPASS interface. The
result output will be (similar to)

-------------------------- SPASS- START- - - - - s oo oo oo
I nput Probl em

1[0:1np] || -> Human(sokrates)*.

2[0:1np] || Mortal (sokrates)* -> .

3[0:1np] || Human(U) -> Mortal (U)*.

This is a nonadic Horn problemw thout equality.

This is a problemthat has, if any, a finite domai n nodel

There are no function synbols.

This is a problemthat contains sort information

The conjecture is ground.

The follow ng nonadi ¢ predicates have finite extensions: Hunan.

Axi om cl auses: 2 Conjecture clauses: 1

Inferences: |EnS | SoR | ORe

Reductions: RFCO R RBA R RObv RUNC RTaut RSST RSSi RFSub RBSub RCon
Extras : Input Saturation, Always Selection, No Splitting, Full Reduction
Precedence: Mrtal > Human > sokrates

Odering : KBO

Processed Probl em

Wrked O f d auses:

Usabl e d auses:
1[0:1np] || -> Human(sokrates)*.
2[0:1np] || Mortal (sokrates)* -> .
ﬂOInMmeMU)H -> Mortal (U)*.
SPASS V 1. 0.
SPASS be|se|te. Proof found.
Probl em sokratesl. dfg
SPASS derived 1 cl auses, backtracked O cl auses and kept 4 cl auses.
SPASS al | ocat ed 438 KByt es.
SPASS spent :00:00.12 on the probl em

:00: 00. 02 for the input.

1 00. for the FLOTTER CNF translation

:00:00.00 for inferences.
:00:00.00 for the backtracking.
:00:00.00 for the reduction

coocooo
o
S
o
S
o
N

SPASS reads the input file and transforms the formulae into clause normal form, where the
conjecture(s) is negated, since SPASS is based on refutation. So the clauses

:Inp] || -> Human(sokrates)*.
:lnp] || Mortal (sokrates)* ->
:lnp] || Human(U) -> Mortal (U)*.

WN =
[eNoNe)

are our input clauses where variables where - > denotes implication, a* meansthat aliteral is
maximal and negative literals left from | | are monadic literals with a variable argument, treated by
the sort technology in SPASS. Next SPASS analyzes the problem and finds out that

This is a nonadic Horn problemw thout equality.

This is a problemthat has, if any, a finite domain nodel
There are no function synbols.

This is a problemthat contains sort information

The conjecture i s ground.

The foll owi ng nonadi ¢ predicates have finite extensions: Human
Axi om cl auses: 2 Conjecture clauses: 1

Based on this information SPASS decides to use the settings

I nferences: IEnS | SoOR | ORe

Reductions: RFCO R RBA R RObv RUNC RTaut RSST RSSi RFSub RBSub RCon

Extras : Input Saturation, Always Selection, No Splitting, Full Reduction
Precedence: Mrtal > Human > sokrates

Ordering : KBO

where he decides to enable the sort inference rules empty sort (I Enss) and sort resolution (I SoR) and
also ordered resolution (1 ORe). Reductions are forward and backward clause reduction (RFCl R

RBC R), obvious reductions (RObv), unit conflict (RUnC), syntactic tautology deletion (RTaut), static
soft typing (RSST), sort simplification (RSSi), forward and backward subsumption (RFSub RBSub)
and condensation (RCon). SPASS chooses the Knuth-Bendix ordering (KBO) with precedence
Mortal > Human > sokrat es.

For such a simple example, SPASS already finds the proof by input saturation/reduction, hence it
does not output any given clauses.

Usabl e Cl auses:

1[0:Inp] || -> Human(sokrates)*.
2[0:1np] || Mortal (sokrates)* ->
3[0: I np] Human(U) || -> Mortal (U)*.

SPASS V 1.0.0
SPASS bei seite: Proof found.
Probl em sokratesl.dfg
SPASS derived 1 cl auses, backtracked O cl auses and kept 4 cl auses.
SPASS al | ocated 438 KByt es.
SPASS spent 0: 00: 00.12 on the problem
0: 00: 00.02 for the input.
0: 00: 00.02 for the FLOTTER CNF transl ation
0: 00: 00. 00 for inferences.

0: 00: 00. 00 for the backtracking.
0: 00: 00. 00 for the reduction.

When called with default settings, SPASS does not output a proof. To get a proof, enter the
- DocPr oof in the options field of the&vebSPASSnterface and then the output will contain in
addition the following proof

Here is a proof with depth 1, length 5 :
1[0:Inp] || -> Human(sokrates)*.
2[0:Inp] || Mortal (sokrates)* -> .

3[0: I np] Human(U) || -> Mortal (U)*.
4[0: Res: 3.1, 2. 0] Human(sokrates) || -> .
5[0:d R 4.0,2.0] || ->.

Fornmul ae used in the proof : 1 3 2

where clause is the result of a resolution step between the claiaesl2 and the empty clause,
clauses is obtained via clause reduction from clausesidi. The numbers given afteor mul ae
used in the proof referto the numbering of formulae in the SPASS input file. For further
options consider owptions help page

Home/ Research UnitsAG 2: Home PagéProjects SPASS Home Padd utorial | Top of page

Max-Planck-Institut fur Informatik
About the Institutd Resear ch Units | News & Activities| Coordinateg Directory| Serviceqd
Search the Sitgintranet

Copyright © 1998-1999 biylax-Planck-Institut fiir InformatikAll rights reserved.
www site design and concept biyve Brahm- <webmaster@mpi-sb.mpgxle

Document last changed on Monday, 04 October 99 - 16:41

